
(Efficient) ML in trigger
(real-time system) deployment

Nhan Tran
Fermilab/Northwestern ECE

AI4EIC workshop
September 9, 2021

Introduction
• ML is powerful paradigm for optimal and automated control and calibration

• real-time control for detectors = online data processing/selection (triggering)
• real-time control for accelerators = efficient beam operation

• ML is computationally expensive — but less expensive than data movement

• Plan for this talk
*Will not make the case for ML or real-time processing, hopefully you’ve already been convinced!
• Discuss system architecture considerations for ML deployment in real-time systems
• Present a few examples - across the full spectrum
• Open-ended thoughts on future challenges

2

Outline
• System level goals and constraints

• Bandwidth, latency, and processing technologies

• ML in trigger — techniques and examples
• Optimized algorithms, implementations, tools (see Dylan’s talk)

• Examples:

• Reconfigurable ASICs (see Farah’s talk)

• CMS Muon Trigger

• SONIC

• Open challenges and food for thought
• Continuous learning (w/accelerator control example)

• Training samples - online learning, transfer learning, domain adaptation

3

4

Adapted from Horowitz

Moving data is expensive
Universal struggle — reduce data as close to the source as possible vs important data FOMO

ML gets us closer to enjoying the best of both worlds?

5

On-detector
ASIC compression

FPGA filter stack
~μs latency

Worldwide
computing grid

On-prem CPU/GPU
filter farm

~100 ms latency

CMS Experiment
40MHz collision rate
~1B detector channels

~100ns latency

Pb/s
40MHz

10s Tb/s
100s kHz

10s Gb/s
~5 kHz

Exabyte-scale
datasets

An example of an extremely heterogeneous real-time system

6

On-detector
ASIC compression

FPGA filter stack
~μs latency

Worldwide
computing grid

On-prem CPU/GPU
filter farm

~100 ms latency

CMS Experiment
40MHz collision rate
~1B detector channels

~100ns latency

Pb/s
40MHz

10s Tb/s
100s kHz

10s Gb/s
~5 kHz

Exabyte-scale
datasets

An example of an extremely heterogeneous real-time system

7

Slides from Jin, Phil

8

HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Guidelines:
> 100 Gbps throughput
< 1ms computational latency
< 10W power budget

9

HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Guidelines:
> 100 Gbps throughput
< 1ms computational latency
< 10W power budget

Heterogeneous, hardware-constrained multi-tiered systems

10

LHC L1 FPGA Trigger as task-based event processing

11

258 Chapter 5. Conceptual design of the Phase-2 Trigger

GCT design remains completely changeable to a fully time-multiplexed approach where all the
data from barrel and endcap can be processed by the same board while offering a more adap-
tive interface to the track finder if required in the future. In the case of the GMT, the choice
to align the TMUX period with that of the track finder is motivated by the main processing
task of this system: correlate tracks and muon information. The firmware resource estimations
indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 upgraded trigger design. The calorimeter trigger
is represented on the left and composed of a barrel calorimeter trigger (BCT) and a global
calorimeter trigger (GCT). The track finder in the center transmits tracking information to the
correlator trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT).
The muon trigger architecture is represented on the right and composed of three muon track
finders: EMTF, OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-
flow processing. The global trigger (GT) receives all trigger information for final decision. For
each of the architecture component, the information about the time slice (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis) are
represented. The architecture modeled relies largely on the use of generic processing boards
to equip each subsystems and the use of specific processing boards is only designated for spe-
cialized tasks. The trigger components directly interfacing with sub-detectors are subject to
constraints on the number of links and assignment of data fibers. At the time of writing, most
of the sub-detector backend electronics designs have been finalized and the trigger primitive
formats specified. In some cases, the format was directly optimized to achieve the best algo-
rithm performance or to optimize the resources on the receiving end. For some sub-detector
interfaces, a baseline format was assumed and it was verified that reasonable changes have
negligible consequences on the overall design. Later stages of the architecture displayed in
Fig. 5.12 show more flexibility in their design. This allows contingency for future improve-
ments and additions.

LHC L1 FPGA Trigger as task-based event processing

12

258 Chapter 5. Conceptual design of the Phase-2 Trigger

GCT design remains completely changeable to a fully time-multiplexed approach where all the
data from barrel and endcap can be processed by the same board while offering a more adap-
tive interface to the track finder if required in the future. In the case of the GMT, the choice
to align the TMUX period with that of the track finder is motivated by the main processing
task of this system: correlate tracks and muon information. The firmware resource estimations
indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 upgraded trigger design. The calorimeter trigger
is represented on the left and composed of a barrel calorimeter trigger (BCT) and a global
calorimeter trigger (GCT). The track finder in the center transmits tracking information to the
correlator trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT).
The muon trigger architecture is represented on the right and composed of three muon track
finders: EMTF, OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-
flow processing. The global trigger (GT) receives all trigger information for final decision. For
each of the architecture component, the information about the time slice (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis) are
represented. The architecture modeled relies largely on the use of generic processing boards
to equip each subsystems and the use of specific processing boards is only designated for spe-
cialized tasks. The trigger components directly interfacing with sub-detectors are subject to
constraints on the number of links and assignment of data fibers. At the time of writing, most
of the sub-detector backend electronics designs have been finalized and the trigger primitive
formats specified. In some cases, the format was directly optimized to achieve the best algo-
rithm performance or to optimize the resources on the receiving end. For some sub-detector
interfaces, a baseline format was assumed and it was verified that reasonable changes have
negligible consequences on the overall design. Later stages of the architecture displayed in
Fig. 5.12 show more flexibility in their design. This allows contingency for future improve-
ments and additions.

Each little box is a customized compute microarchitecture for a
specific task - a huge job

Can we make ML easily accessible at this stage?

What about when we leave custom embedded systems and go to off-
the-shelf computing? How to integrate options beyond CPU? GPU?

Guiding principles

• I have yet to talk about any specific (ML) algorithm or network architecture — there are many
approaches, existent and in development
• Very interesting to see the many different ideas in this workshop

• Designing a real-time, resource/latency constrained system adds additional axes of
optimization — try to build an adaptable, flexible, scalable system
• Accessible at each layer of data processing
• ML provides powerful data reduction techniques, has the potential to account for unknown

unknowns

13

Efficient ML in trigger
— techniques and examples

14

Efficient ML in trigger
— techniques and examples

15

{algorithms, implementations, tool flows for}

16

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOPREPORT OF THE BASIC RESEARCH NEEDS WORKSHOP

76 PANEL 2 REPORT

Figure 2. Multiscale co-design framework. Co-design involves multi-disciplinary collaboration that takes into account the interdependencies among
materials discovery, device physics, architectures, and the software stack for developing information processing systems of the future. Such
systems will address future DOE needs in computing, power grid management, and science facility workloads.

The co-design framework would overcome the following obstacles to advancing microelectronics beyond
the end of Moore’s Law:

 " The value of new and novel materials or device technologies is not currently understood in a system
architecture context.

 " Metrics at the application level are not understood in a system context, while metrics at the system context
are not currently understood at a device or materials context.

 " Scaling of performance will require

 { co-design that spans all layers in Figure 2;

 { multiscale modeling among many technology levels (materials, devices, architectures, system software,
algorithms, and applications);

 { linkage between and across levels (e.g., apply device-scale first-principle models to automate search for
materials and support algorithm-aware architecture choices; and development of alternative computing
models, specialized hardware accelerators, and non-von Neumann architectures).

 " Heterogeneity of the system software stack is extreme.

Materials Co-design
The discussions in this panel included many topics that are described in the deep co-design interactions in
Figure 3. Materials science thrusts that would form the fundamental science underpinnings of the co-design
platform could include the use of a computational materials discovery approach (for example, the Materials
Project) coupled with precise materials synthesis to discover specific sets of materials/phenomena. Challenges
include new, disruptive interconnect materials for information transport, or new mechanisms for information
transport that could eliminate the almost 70% of power dissipation in current CMOS due to flowing current in
interconnects. A second broad thrust is to start to explore bi-stable (and preferably multi-stable and analog)
states in functional materials, but those that can be manipulated reproducibly and repeatedly with applied
voltages in the range of 1-100 mV instead of ~1 V. This thrust will require a precise definition of the electronic

Algorithms:
e.g. AlexNet to SqueezNet/OnceForAll, NAS

Implementations:
e.g. Quantization, Pruning, Dataflow

Tool flows:
e.g. IRs, synthesis, EDA

hls4ml: a codesign workflow!

17

fastmachinelearning.org/hls4ml

See Dylan Rankin’s talk!

http://fastmachinelearning.org/hls4ml

Examples
• The frontest end of the detector - reconfigurable ASIC data compression
• Level-1 FPGA trigger deployment
• Efficient deployment of coprocessors in trigger

18

AI ASIC

• Enable more computationally complex compression algorithms
• Customize the compression algorithm per sensor location
• Adapt the algorithm for changing conditions, new ideas

19

Requirements

Rate 40 MHz

Total ionizing dose 200 Mrad

High energy hadron flux 1 × 107 cm2/s

Metric Simulation Target

Power 48 mW <100 mW

Energy / inference 1.2 nJ N/A

Area 2.88 mm2 <4 mm2

Gates 780k N/A

Latency 50 ns <100 ns

Fixed algorithm architecture, but allow
weights to be reconfigurable

See Farah Fahim’s talk!
Open questions, how to optimally build latent space, use representation downstream?

Di Guglielmo, Fahim, Herwig, et al, arXiv: 2105.01683

Case study: muon trigger upgrade

20

98 Chapter 3. Trigger algorithms

0 10 20 30 40 50 60
 threshold [GeV]

T
p

1

10

210

310

410
R

at
e

[k
H

z]

EMTF
EMTF++

CMS Phase-2 Simulation 14 TeV, 200 PU

0 50 100 150 200 250 300 350
PU

0

50

100

R
at

e
[k

H
z]

EMTF
EMTF++

 > 20 GeV
T

L1 Muon p

CMS Phase-2 Simulation 14 TeV

Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

82 Chapter 3. Trigger algorithms

with ⇠ 1 cm r � f resolution and ⇠ 2 ns timing resolution, and cathode strip chambers (CSC),
with ⇠ 75 � 150 µm r � f resolution. In the barrel region, fully covering the pseudorapidity
range |h| < 0.83, the detectors are placed parallel to the CMS axis and consist of four DT+RPC
layers arranged radially outwards in four stations MB/RB1,2,3,4 and longitudinally in five
wheels labeled with �2,�1,0,1,2, with the sign corresponding to the sign of h. The four stations
are separated by four layers of steel of the magnet yoke (see Fig. 3.19). In the region of the two
endcaps, fully covering the range 1.24 < |h| < 2.4, the detectors are placed perpendicular
to the CMS axis and comprise four CSC+RPC layers arranged longitudinally in four stations
ME/RE1,2,3,4 on each side and separated again by four layers of steel, as shown in Fig. 3.19. In
Phase-2, the endcap muon detectors will be upgraded with three GEM chambers ME0, GE1/1,
GE2/1 and two improved RPC (iRPC) chambers RE3/1 and RE4/1 on each side (see Fig. 3.19)
for improved resolution in forward directions. The ME0 chamber, combined with the silicon
tracker, will also extend the pseudorapidity range up to |h| = 2.8. The overlap region, defined
by the pseudorapidity range of 0.83 < |h| < 1.24, is covered partly by the barrel and partly by
the endcap detectors.

14(i)RPC Trigger Primitives brieuc.francois@cern.ch

Muon System (including upgrade)

Barrel (DT+RPC) Overlap (DT+CSC+RPC)

Endcap (G
EM

+C
SC

+R
PC

)

Figure 3.19: Schematic view of the Phase-2 CMS muon detector system. A quadrant cross
section with h > 0 and f = 90� is shown. The new Phase-2 detectors (in orange, red, and
purple) are installed in the most forward region of the detector.

The design of the CMS muon detector system naturally leads to consider three distinct h re-
gions, barrel, overlap, and endcap, featuring different detector technologies and geometries
and thus posing different challenges to L1 muon reconstruction. Additional challenges to the
detector design arise from the different profile of the magnetic field, turning smoothly from
nearly uniform in the barrel to highly nonuniform in the endcaps, and from the particle occu-
pancy, which increases rapidly in going from the barrel to the endcaps. Based on the experi-
ence of successful L1 muon tracking in the Phase-1 Upgrade, the same regional approach of the
muon track finding is retained in Phase-2. Three baseline muon track finders are considered in
the three h ranges of the barrel, overlap, and endcap detector regions, aiming both to improve
standalone prompt muon track finding relative to the Phase-1 track finders and to provide the
new muon types required in Phase-2. Optimal algorithms are developed in each of the three
regions. These developments do not preclude some future consolidation, and even newer al-
gorithms to be developed, but given the Phase-2 challenges the diversity of algorithms is a
strength at the present stage.

CMS Trigger TDR

EMTF = BDT (external memory)
EMTF++ = fully connected NN
~3x reduction in the trigger rate for neural network!

Case study: muon trigger upgrade

21

98 Chapter 3. Trigger algorithms

0 10 20 30 40 50 60
 threshold [GeV]

T
p

1

10

210

310

410
R

at
e

[k
H

z]

EMTF
EMTF++

CMS Phase-2 Simulation 14 TeV, 200 PU

0 50 100 150 200 250 300 350
PU

0

50

100

R
at

e
[k

H
z]

EMTF
EMTF++

 > 20 GeV
T

L1 Muon p

CMS Phase-2 Simulation 14 TeV

Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

82 Chapter 3. Trigger algorithms

with ⇠ 1 cm r � f resolution and ⇠ 2 ns timing resolution, and cathode strip chambers (CSC),
with ⇠ 75 � 150 µm r � f resolution. In the barrel region, fully covering the pseudorapidity
range |h| < 0.83, the detectors are placed parallel to the CMS axis and consist of four DT+RPC
layers arranged radially outwards in four stations MB/RB1,2,3,4 and longitudinally in five
wheels labeled with �2,�1,0,1,2, with the sign corresponding to the sign of h. The four stations
are separated by four layers of steel of the magnet yoke (see Fig. 3.19). In the region of the two
endcaps, fully covering the range 1.24 < |h| < 2.4, the detectors are placed perpendicular
to the CMS axis and comprise four CSC+RPC layers arranged longitudinally in four stations
ME/RE1,2,3,4 on each side and separated again by four layers of steel, as shown in Fig. 3.19. In
Phase-2, the endcap muon detectors will be upgraded with three GEM chambers ME0, GE1/1,
GE2/1 and two improved RPC (iRPC) chambers RE3/1 and RE4/1 on each side (see Fig. 3.19)
for improved resolution in forward directions. The ME0 chamber, combined with the silicon
tracker, will also extend the pseudorapidity range up to |h| = 2.8. The overlap region, defined
by the pseudorapidity range of 0.83 < |h| < 1.24, is covered partly by the barrel and partly by
the endcap detectors.

14(i)RPC Trigger Primitives brieuc.francois@cern.ch

Muon System (including upgrade)

Barrel (DT+RPC) Overlap (DT+CSC+RPC)

Endcap (G
EM

+C
SC

+R
PC

)

Figure 3.19: Schematic view of the Phase-2 CMS muon detector system. A quadrant cross
section with h > 0 and f = 90� is shown. The new Phase-2 detectors (in orange, red, and
purple) are installed in the most forward region of the detector.

The design of the CMS muon detector system naturally leads to consider three distinct h re-
gions, barrel, overlap, and endcap, featuring different detector technologies and geometries
and thus posing different challenges to L1 muon reconstruction. Additional challenges to the
detector design arise from the different profile of the magnetic field, turning smoothly from
nearly uniform in the barrel to highly nonuniform in the endcaps, and from the particle occu-
pancy, which increases rapidly in going from the barrel to the endcaps. Based on the experi-
ence of successful L1 muon tracking in the Phase-1 Upgrade, the same regional approach of the
muon track finding is retained in Phase-2. Three baseline muon track finders are considered in
the three h ranges of the barrel, overlap, and endcap detector regions, aiming both to improve
standalone prompt muon track finding relative to the Phase-1 track finders and to provide the
new muon types required in Phase-2. Optimal algorithms are developed in each of the three
regions. These developments do not preclude some future consolidation, and even newer al-
gorithms to be developed, but given the Phase-2 challenges the diversity of algorithms is a
strength at the present stage.

CMS Trigger TDR

EMTF = BDT (external memory)
EMTF++ = fully connected NN
~3x reduction in the trigger rate for neural network!

�1

Dense Network
23 ➜ 30 ➜ 25 ➜ 20

➜ momentum & classifier

Inference time: 280 ns
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

Open questions, how to train,
monitor, and calibrate such online

algorithms? Can/should we
automate updates?

More discussion on this later…

Compute acceleration

22

Domain ML

as a Service
(aaS)

direct
connect

GPU FPGA ASICCPU …

Algorithm

Integration

Hardware

How to accommodate an unknown number of algorithms on an unknown hardware platform?

SONIC
Services for Optimized Network Inference on Coprocessors

23

Flexible - optimize the hardware based on task; no need
to support many ML frameworks in experiment software

Adaptable - right-size the system to the task, you choose
the number of coprocessors based on computing needs

Scalable - coprocessor need not be co-located next to
existing CPU infrastructure; common software framework

NCPU != Ncoprocessor

COPROCESSOR #1
(GPU,FPGA,ASIC)

COPROCESSOR #3
(GPU,FPGA,ASIC)

Network

COPROCESSOR #2
(GPU,FPGA,ASIC)

Results

24

Demonstrated significant and efficient
acceleration of LHC/ProtoDUNE tasks

Broad range of tasks — cluster calibration, jet tagging,
cosmics ID, Graph NNs

Deployed on-premises, in the cloud, and at HPC - exploring
all types of new hardware (FPGA, GPU, TPU, …)

References:
arXiv:1904.08986
arXiv:2007.10359
arXiv:2009.04509
arXiv:2010.08556

https://arxiv.org/abs/1904.08986
https://arxiv.org/abs/2007.10359
https://arxiv.org/abs/2009.04509
https://arxiv.org/abs/2010.08556

Open-ended thoughts and
future challenges

25

Continuous learning setup

26

 FNAL, JLab, PNNL, UCSD collaboration

arXiv: 2011.07371

Continuous learning setup

27

8

FIG. 5. Loss function as a function of the number of training
epochs for the Booster LSTM surrogate model. The blue line
gives the loss values for training sample and the orange line
is the calculated loss using validation samples.

torical patterns of the time-series data, and thus achieve
high accuracy in prediction.

The LSTM surrogate model was developed and imple-
mented using the Keras library [92]. We used the Adam
optimizer [93] and a cost function of the mean squared
error (MSE) of the predictions. The total number of data
samples used for the analysis of the LSTM surrogate was
250,000 time steps from March 10, 2020, which we split
into two non-overlapping data sets composed of 175,000
time steps for training and 75,000 time steps for testing.
These data sets were then processed to allow 150 time
step look-back, 1 time step look-forward as mentioned
above.

The training samples were then further split using a
K-fold cross-validation method: we defined five cross-
validation folds that split the training and validation in a
80%/20% split. This technique was used in order to esti-
mate how the surrogate model is expected to perform in
general as well as to monitor over-fitting. While this sort
of cross-validation was performed on the same segment of
data in this implementation, we plan to cross-validate on
di↵erent data samples when training the surrogate model
in the future, at a larger scale. The loss values from the
validation sample were used to determine if the learn-
ing rate should be reduced or if the surrogate model had
stopped learning, as shown in Figure 5. After more than
300 training epochs, the figure shows a bifurcation be-
tween the values of training loss and validation loss, sug-
gesting some over-fitting. Therefore, we used the values
of model parameters prior to this bifurcation as the pa-
rameters of our surrogate model. On separate test data,
the loss value for this surrogate model was determined
to be 9 ⇥ 10�4 which is consistent with the training data
set prior to the bifurcation.

Overlaid time series from the data and from LSTM pre-

TABLE II. Fermilab Booster surrogate model, which learns
to reproduce the environment in terms of the three time-
series variables, one of which determines the reward as given
in Eq. 4. The input LSTM layer receives five values, de-
scribing the current state B:IMINER, B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. The output layer is a prediction of B:IMINER,
B:LINFRQ, B:VIMIN.

Layer Layer Type Outputs Activation Parameters

1 LSTM 256 tanh 416,768

2 LSTM 256 tanh 525,312

3 LSTM 256 tanh 525,312

4 dense 3 linear 771

Total · · · · · · · · · 1,468,163

FIG. 6. Selected test data (blue) versus prediction values
(orange) from the Booster LSTM surrogate model. New data
is fed into the trained surrogate model at each time step.

dictions for a selected time window are shown in Fig. 6.
Based on the great similarity of these results, the surro-
gate model was deemed adequate to use for initial train-
ing of the RL agent policy model.

B. Reinforcement Learning for GMPS Control

For this study, we formulated the problem as an
episodic Markov decision process, where every episode
contains 50 time steps. As in all Q-learning, the agent
learns to maximize the reward within the time horizon of
an episode. We developed our RL workflow based on a
variant of DQN, the double DQN algorithm [81, 94, 95],

LSTM-based network using
Deep Q-learning framework

for surrogate model to mimic
behavior of Booster

 FNAL, JLab, PNNL, UCSD collaboration

arXiv: 2011.07371

Continuous learning setup

28

8

FIG. 5. Loss function as a function of the number of training
epochs for the Booster LSTM surrogate model. The blue line
gives the loss values for training sample and the orange line
is the calculated loss using validation samples.

torical patterns of the time-series data, and thus achieve
high accuracy in prediction.

The LSTM surrogate model was developed and imple-
mented using the Keras library [92]. We used the Adam
optimizer [93] and a cost function of the mean squared
error (MSE) of the predictions. The total number of data
samples used for the analysis of the LSTM surrogate was
250,000 time steps from March 10, 2020, which we split
into two non-overlapping data sets composed of 175,000
time steps for training and 75,000 time steps for testing.
These data sets were then processed to allow 150 time
step look-back, 1 time step look-forward as mentioned
above.

The training samples were then further split using a
K-fold cross-validation method: we defined five cross-
validation folds that split the training and validation in a
80%/20% split. This technique was used in order to esti-
mate how the surrogate model is expected to perform in
general as well as to monitor over-fitting. While this sort
of cross-validation was performed on the same segment of
data in this implementation, we plan to cross-validate on
di↵erent data samples when training the surrogate model
in the future, at a larger scale. The loss values from the
validation sample were used to determine if the learn-
ing rate should be reduced or if the surrogate model had
stopped learning, as shown in Figure 5. After more than
300 training epochs, the figure shows a bifurcation be-
tween the values of training loss and validation loss, sug-
gesting some over-fitting. Therefore, we used the values
of model parameters prior to this bifurcation as the pa-
rameters of our surrogate model. On separate test data,
the loss value for this surrogate model was determined
to be 9 ⇥ 10�4 which is consistent with the training data
set prior to the bifurcation.

Overlaid time series from the data and from LSTM pre-

TABLE II. Fermilab Booster surrogate model, which learns
to reproduce the environment in terms of the three time-
series variables, one of which determines the reward as given
in Eq. 4. The input LSTM layer receives five values, de-
scribing the current state B:IMINER, B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. The output layer is a prediction of B:IMINER,
B:LINFRQ, B:VIMIN.

Layer Layer Type Outputs Activation Parameters

1 LSTM 256 tanh 416,768

2 LSTM 256 tanh 525,312

3 LSTM 256 tanh 525,312

4 dense 3 linear 771

Total · · · · · · · · · 1,468,163

FIG. 6. Selected test data (blue) versus prediction values
(orange) from the Booster LSTM surrogate model. New data
is fed into the trained surrogate model at each time step.

dictions for a selected time window are shown in Fig. 6.
Based on the great similarity of these results, the surro-
gate model was deemed adequate to use for initial train-
ing of the RL agent policy model.

B. Reinforcement Learning for GMPS Control

For this study, we formulated the problem as an
episodic Markov decision process, where every episode
contains 50 time steps. As in all Q-learning, the agent
learns to maximize the reward within the time horizon of
an episode. We developed our RL workflow based on a
variant of DQN, the double DQN algorithm [81, 94, 95],

LSTM-based network using
Deep Q-learning framework

for surrogate model to mimic
behavior of Booster

10

FIG. 13. FPGA resources required for the implementation of
the RL MLP are shown as a function of the fixed-point pre-
cision utilized for internal NN operations. All resources are
normalized to the total available in a benchmark Arria 10 de-
vice (see Table VIC). Results are shown for implementations
with reuse factors of 128 (solid lines) and 1568 (dashed lines).

TABLE V. The required FPGA resources and correspond-
ing latency for the NN algorithm is shown for three possible
implementations corresponding to various reuse factors RF.
In addition to design parameters, the maximum available re-
sources are shown for an Intel Arria 10 benchmark FPGA.
Memory logic array blocks (MLABs) are configured from ten
ALMs and hence no device maximum is shown.

RF DSP BRAM MLAB ALM Register Latency

128 130 114 229 21.4 k 51.2 k 2.8µs

224 74 100 1420 40.2 k 78.3 k 4.1µs

1568 26 38 357 24.9 k 54.9 k 17.2µs

Available 1518 2713 - 427 k 1.7M -

Table VIC compares several implementations for con-
stant precision (20 total bits) and various re-use factors.
In general the algorithm latency varies directly versus
the RF while the numbers of DSPs and BRAMs required
are inversely proportional to the RF. Variations in the
required registers and ALMs are generally not significant
by comparison. These results demonstrate a range of
feasible firmware implementations of the algorithm that
fit within the resource and latency budget of the GMPS
control board. The ability to tune resource usage pro-
vides significant flexibility to accommodate potential fu-
ture scenarios where the NN algorithm will inevitably co-
exist on a single FPGA with additional control logic that
may present inflexible resource constraints of its own.

D. Extensions to more complex algorithms

To this point, the discussion of the hardware imple-
mentation has centered around the three-hidden-layer
MLP architecture found to be optimal for the GMPS
control problem in the context of RL studies described
in Section V. However, the conclusions of the studies de-
scribed above may be extended to more complex NN
algorithms providing improved GMPS performance in
tandem with the experience gained through future data-
taking campaigns.
The simplest extension to the single MLP solution,

well-motivated in the context of RL studies, is to run
inference with multiple copies of the network in paral-
lel on the FPGA. Each NN may be programmed with a
unique set of weights, allowing for disagreement among
the models, where additional voter logic determined the
final action to be taken by the control system. This may
not be di�cult to achieve in practice for models with
similar complexity to the one studied in Section VIC.
Achieving designs that consume 6% of all available re-
sources suggests that an ensemble of O(10) models is
feasible.
In addition to multiple copies of a relatively simple al-

gorithm, more complex networks can be pursued. The
MLP architecture studied can be extended to additional
layers and larger numbers of nodes per layer maintain-
ing an acceptable footprint through corresponding ad-
justment of the re-use factor. The theoretical scaling
behavior was shown in the calculations of Section VIA
and observed in the implementation using Quartus HLS.
As an illustrative example, one could consider a refine-
ment of the baseline architecture where the number of
nodes per layer is uniformly increased by a scaling fac-
tor k. In this case, the number of required multipliers
may be kept constant by simultaneously increasing the
RF by a factor of k2, at the expense of a corresponding
increase in algorithm latency. More sophisticated archi-
tectures such as convolutional and recurrent NNs may
also be considered, taking advantage of their represen-
tations as compositions of multiple dense sub-layers. A
detailed study of such possibilities is left for future work.

VII. SUMMARY AND OUTLOOK

[TODO: conclude: Hoped-for gains in injection field
stability, future directions for ML, implementation .]
In this report we have described a method for con-

trolling an important subsystem of the Fermilab Booster
accelerator using reinforcement learning. We addition-
ally demonstrated a proof-of-principle by reproducing an
expert-built and by-hand tuned system. Although many
open questions remain, this proof-of-principle provides
confidence to test our proposed on “live” hardware. The
results of this work will be the subject of a future report.
It is exciting to note that the authors of Ref. [22] also

adopted Open AI Gym [37] as a programming interface

DNN-based ensemble
model for RL online agent

 FNAL, JLab, PNNL, UCSD collaboration

arXiv: 2011.07371

Continuous learning setup

29

 FNAL, JLab, PNNL, UCSD collaboration

arXiv: 2011.07371

8

FIG. 5. Loss function as a function of the number of training
epochs for the Booster LSTM surrogate model. The blue line
gives the loss values for training sample and the orange line
is the calculated loss using validation samples.

torical patterns of the time-series data, and thus achieve
high accuracy in prediction.

The LSTM surrogate model was developed and imple-
mented using the Keras library [92]. We used the Adam
optimizer [93] and a cost function of the mean squared
error (MSE) of the predictions. The total number of data
samples used for the analysis of the LSTM surrogate was
250,000 time steps from March 10, 2020, which we split
into two non-overlapping data sets composed of 175,000
time steps for training and 75,000 time steps for testing.
These data sets were then processed to allow 150 time
step look-back, 1 time step look-forward as mentioned
above.

The training samples were then further split using a
K-fold cross-validation method: we defined five cross-
validation folds that split the training and validation in a
80%/20% split. This technique was used in order to esti-
mate how the surrogate model is expected to perform in
general as well as to monitor over-fitting. While this sort
of cross-validation was performed on the same segment of
data in this implementation, we plan to cross-validate on
di↵erent data samples when training the surrogate model
in the future, at a larger scale. The loss values from the
validation sample were used to determine if the learn-
ing rate should be reduced or if the surrogate model had
stopped learning, as shown in Figure 5. After more than
300 training epochs, the figure shows a bifurcation be-
tween the values of training loss and validation loss, sug-
gesting some over-fitting. Therefore, we used the values
of model parameters prior to this bifurcation as the pa-
rameters of our surrogate model. On separate test data,
the loss value for this surrogate model was determined
to be 9 ⇥ 10�4 which is consistent with the training data
set prior to the bifurcation.

Overlaid time series from the data and from LSTM pre-

TABLE II. Fermilab Booster surrogate model, which learns
to reproduce the environment in terms of the three time-
series variables, one of which determines the reward as given
in Eq. 4. The input LSTM layer receives five values, de-
scribing the current state B:IMINER, B:LINFRQ, B:VIMIN, I:IB,
and I:MDAT40. The output layer is a prediction of B:IMINER,
B:LINFRQ, B:VIMIN.

Layer Layer Type Outputs Activation Parameters

1 LSTM 256 tanh 416,768

2 LSTM 256 tanh 525,312

3 LSTM 256 tanh 525,312

4 dense 3 linear 771

Total · · · · · · · · · 1,468,163

FIG. 6. Selected test data (blue) versus prediction values
(orange) from the Booster LSTM surrogate model. New data
is fed into the trained surrogate model at each time step.

dictions for a selected time window are shown in Fig. 6.
Based on the great similarity of these results, the surro-
gate model was deemed adequate to use for initial train-
ing of the RL agent policy model.

B. Reinforcement Learning for GMPS Control

For this study, we formulated the problem as an
episodic Markov decision process, where every episode
contains 50 time steps. As in all Q-learning, the agent
learns to maximize the reward within the time horizon of
an episode. We developed our RL workflow based on a
variant of DQN, the double DQN algorithm [81, 94, 95],

LSTM-based network using
Deep Q-learning framework

for surrogate model to mimic
behavior of Booster

10

FIG. 13. FPGA resources required for the implementation of
the RL MLP are shown as a function of the fixed-point pre-
cision utilized for internal NN operations. All resources are
normalized to the total available in a benchmark Arria 10 de-
vice (see Table VIC). Results are shown for implementations
with reuse factors of 128 (solid lines) and 1568 (dashed lines).

TABLE V. The required FPGA resources and correspond-
ing latency for the NN algorithm is shown for three possible
implementations corresponding to various reuse factors RF.
In addition to design parameters, the maximum available re-
sources are shown for an Intel Arria 10 benchmark FPGA.
Memory logic array blocks (MLABs) are configured from ten
ALMs and hence no device maximum is shown.

RF DSP BRAM MLAB ALM Register Latency

128 130 114 229 21.4 k 51.2 k 2.8µs

224 74 100 1420 40.2 k 78.3 k 4.1µs

1568 26 38 357 24.9 k 54.9 k 17.2µs

Available 1518 2713 - 427 k 1.7M -

Table VIC compares several implementations for con-
stant precision (20 total bits) and various re-use factors.
In general the algorithm latency varies directly versus
the RF while the numbers of DSPs and BRAMs required
are inversely proportional to the RF. Variations in the
required registers and ALMs are generally not significant
by comparison. These results demonstrate a range of
feasible firmware implementations of the algorithm that
fit within the resource and latency budget of the GMPS
control board. The ability to tune resource usage pro-
vides significant flexibility to accommodate potential fu-
ture scenarios where the NN algorithm will inevitably co-
exist on a single FPGA with additional control logic that
may present inflexible resource constraints of its own.

D. Extensions to more complex algorithms

To this point, the discussion of the hardware imple-
mentation has centered around the three-hidden-layer
MLP architecture found to be optimal for the GMPS
control problem in the context of RL studies described
in Section V. However, the conclusions of the studies de-
scribed above may be extended to more complex NN
algorithms providing improved GMPS performance in
tandem with the experience gained through future data-
taking campaigns.
The simplest extension to the single MLP solution,

well-motivated in the context of RL studies, is to run
inference with multiple copies of the network in paral-
lel on the FPGA. Each NN may be programmed with a
unique set of weights, allowing for disagreement among
the models, where additional voter logic determined the
final action to be taken by the control system. This may
not be di�cult to achieve in practice for models with
similar complexity to the one studied in Section VIC.
Achieving designs that consume 6% of all available re-
sources suggests that an ensemble of O(10) models is
feasible.
In addition to multiple copies of a relatively simple al-

gorithm, more complex networks can be pursued. The
MLP architecture studied can be extended to additional
layers and larger numbers of nodes per layer maintain-
ing an acceptable footprint through corresponding ad-
justment of the re-use factor. The theoretical scaling
behavior was shown in the calculations of Section VIA
and observed in the implementation using Quartus HLS.
As an illustrative example, one could consider a refine-
ment of the baseline architecture where the number of
nodes per layer is uniformly increased by a scaling fac-
tor k. In this case, the number of required multipliers
may be kept constant by simultaneously increasing the
RF by a factor of k2, at the expense of a corresponding
increase in algorithm latency. More sophisticated archi-
tectures such as convolutional and recurrent NNs may
also be considered, taking advantage of their represen-
tations as compositions of multiple dense sub-layers. A
detailed study of such possibilities is left for future work.

VII. SUMMARY AND OUTLOOK

[TODO: conclude: Hoped-for gains in injection field
stability, future directions for ML, implementation .]
In this report we have described a method for con-

trolling an important subsystem of the Fermilab Booster
accelerator using reinforcement learning. We addition-
ally demonstrated a proof-of-principle by reproducing an
expert-built and by-hand tuned system. Although many
open questions remain, this proof-of-principle provides
confidence to test our proposed on “live” hardware. The
results of this work will be the subject of a future report.
It is exciting to note that the authors of Ref. [22] also

adopted Open AI Gym [37] as a programming interface

DNN-based ensemble
model for RL online agent

10

FIG. 7. Top: Total rolling reward per episode versus number
of training episodes for the DQN MLP algorithm (solid red
line) at top. During training, the 10-episode rolling window
determines the first entry at the 10th episode on the plot.
Bottom: The corresponding testing results (without a rolling
average) are shown below.

VI. IMPLEMENTATION IN FAST
ELECTRONICS

Fast GMPS control electronics are required to col-
lect information from the Booster environment, decide
whether to apply a corrective action, and distribute the
corresponding control signal, all with the low latency re-
quirement set by the Booster’s 15 Hz cycle. An FPGA
is a natural choice to implement the corresponding cir-
cuit, accommodating latencies far below those achievable
with a CPU or GPU while allowing reconfigurability im-
possible in a custom application-specific integrated cir-
cuit (ASIC) solution. The DQN MLP GMPS regulation

model proposed in Section V B requires an e�cient, but
adjustable, implementation of NN algorithms, strongly
suggesting an FPGA-based implementation. As a pre-
liminary step, we take the o✏ine-trained DQN MLP with
weights fixed and deploy it in an FPGA.

The following subsections review the computational
steps required for a single NN inference (§VI A); describe
the basic elements of an FPGA and how a deep NN cal-
culation can be e�ciently mapped to a corresponding
circuit (§VI B); present an implementation of the DQN
MLP described above in Section V and the impact of
various design choices (§VI C); and lastly discuss possible
extensions of the implementation to accommodate more
complex algorithms which are of interest (§VI D).

A. Elements of NN Inference

The structure of an MLP is a series of alternating lin-
ear and nonlinear transformations (layers), with the ith
layer mapping a set of inputs xi (features) to a discrete
list of outputs yi. In the present application, the fea-
tures may include any measurements of the GMPS en-
vironment, such as digitized traces from the reference
magnet system, line voltage frequency, and equipment
gallery temperature. For the DQN MLP, the outputs
yi are scores associated to a discrete set of possible ac-
tions, with the highest-scoring action being the one taken
by the controller. An MLP layer f yielding m outputs
may be written in terms of its action on a set of inputs
{xi}i=1,...,n as

f : xi ! �

X

i

wijxi + bj

!
, (9)

where wij (the n ⇥ m weight matrix) and bj (the m-
dimensional bias vector) are configurable parameters of
the linear translation and � is an m-to-m nonlinear acti-
vation function. For each layer, the activation function is
prescribed as a part of the model architecture while opti-
mal values for the weights and biases are found through
a training procedure. The DQN MLP utilizes the linear
(identity) ReLU(xi) = max(xi, 0) activation functions.
The complete, k-layer NN is specified by an ordered com-
position of layers y = f (1)f (2) . . . f (k)(x). While the in-
put and output dimensions are fixed by the set of fea-
tures and actions, the dimensionality of intermediate lay-
ers is arbitrary. Table III describes the architecture of the
DQN MLP, in addition to the number of configurable pa-
rameters and total multiply-and-accumulate (MAC) op-
erations required.

B. NN Inference on FPGAs

An FPGA consists of an array of logic gates that may
be programmed to emulate any circuit (up to the physi-
cal resource constraints of the specific hardware device).

Reduced beam losses predicted
from RL approach

Challenges

30

Data movement is expensive!
Can training data be transient?

Should we put the training hardware closer?

Is an optimized implementation able to
generalize to all detector/accelerator

conditions?
e.g. https://arxiv.org/abs/2102.11289

Configuration like this with reconfigurable
weights can be expensive, what about partially

reconfigurable weights/activiations?
e.g. tiny transfer learning, https://arxiv.org/abs/2007.11622

Outlook
• Real-time ML deployment still evolving — but it’s very promising!

• A lot of progress, quickly

• In rapidly moving space, considerations for system design that is both performant but flexible
• Examples given from sensor integration front-end, to FPGA filter stack, to coprocessors

• How to balance optimized performance and hardware implementations with generalizability
and interpretability?

31

